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This paper presents a parametric variable structure control (PVSC) for the
spinning simple-#exure beam via a control force applied along the axial direction
to suppress the transverse vibrations. The partial di!erential equation (PDE) is
regarded as the distributed parameter system (DPS) and is selected as the object to
be controlled. The PVSC law designed by Lyapunov's direct method ensures
that the system is asymptotically stable and satis"es the reaching condition
simultaneously. The "nite di!erence method is employed in the numerical
simulations to show the e!ectiveness of the control laws.
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1. INTRODUCTION

Simply supported beams are essential machine elements and are commonly used in
many mechanical systems. For instance, marine propulsion, mechanical drive
trains, face-milling cutters and drilling of o!shore oil, etc., are examples of such
systems. Large-amplitude vibrations can cause failure of machines and decrease
their accuracy. Hence, how to control these factors which cause system vibrations
is an important task. There exists an extensive literature on current research
pertaining to the vibration and dynamic stability of the simply supported beam [1].
In these studies, the vibrations of a DPS are governed by one or more coupled
partial di!erential equations whose coe$cients or parameters are functions of
spatial and time variables.

Recently, the parametric stabilization of vibrations has received a lot of
attention. Franke [2, 3] investigated the control of the bilinear DPS, in which
the furnace, population dynamics, and the variable-length beam were used as
examples. While attention has been directed to instabilities caused by parametrical
excitation, parametric stabilization of vibration is a relatively new concept [4].
Axial compression can buckle a beam but parametric control can stabilize the
transverse vibration of a beam.

Variable structure control (VSC) was studied in the early 1950s for systems
represented by single-input high-order di!erential equations. For such simple
systems, both the sliding mode and reaching mode controls can be designed by trial
and error [5}7]. Now it is recognized that robustness and invariance are the most
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Figure 1. Schematic diagram of a distributed parameter spinning beam system.
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important virtues of the VSC systems. Under certain conditions, the sliding mode
of a VSC system is invariant, more than just robust, with respect to system
perturbations and external disturbances. Recently, Fung and Liao [8] studied the
vibration reduction of an axially moving string by use of the VSC scheme, which is
based on the independent mode space control method. The sliding mode criterion
problem is de"ned on the associated "nite-dimensional approximation of the
control system, which is governed by a set of ordinary di!erential equations
(ODEs).

In the present study, vibration control of a spinning simple-#exure beam via
a control force applied along its axial direction is investigated. Lyapunov's direct
method is employed to develop a new PVSC algorithm, which renders the
system asymptotically stable and satis"es the reaching condition simultaneously.
Asymptotical stability of the control system is proved. The "nite di!erence method
is used for the numerical simulations of the closed-loop control system. Finally,
some important conclusions are drawn.

2. EQUATIONS OF MOTION

The physical model shown in Figure 1 is a simply supported spinning beam
controlled by an axial force F(t) applied at the right-hand-side boundary. The
analyzed spatial length is l, Young's modulus is > and moment of inertia is I. The
governing equations [9] of the transverse vibrations are
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where o is the mass density and >Iv
xxxx

and >Iw
xxxx

are the terms due to bending
rigidity of the simply supported beam. The vibrational behavior of a rotating
uniform beam with a constant spinning speed was investigated by Bauer [10] for
all possible combinations of the free, clamped, simply supported and guided
boundaries. In this paper, the control force F(t) is employed to suppress the
transverse vibrations v(x, t) and w(x, t) of the spinning simple-#exure beam system.
The control law is designed by Lyapunov's direct method and described in the
following section.

3. CONTROL DESIGN BY LYAPUNOV'S METHOD

Orlov [11] applied Lyapunov's method to synthesize the controller of a DPS.
Habib and Radcli!e [12] used the energy as Lyapunov's functional to design
a stabilizing, axial damper control law for a pinned Euler}Bernoulli beam. In the
present study, Lyapunov's method is used to design the general form of control law
for the spinning simple-#exure beam system. We propose to take the total energy of
the uncontrol beam system as Lyapunov's functional candidate:
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The total derivative (d/dt) ( ) is distinct from the partial derivative (L/Lt) ( ). The
displacements v(x, t) and w(x, t) are measured in the rotating co-ordinate system
Oxyz. Their total derivatives with respect to time are dv/dt"Lv/Lt!Xw and
dw/dt"Lw/Lt#Xv respectively. By virtue of equations (1) and (2), the time
derivative of equation (5) in v function is
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Integrating by parts and using the boundary conditions (3) and (4), we have
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Taking time derivative of the total energy (5) in w function, we obtain EQ
w
(t) which is

similar to equation (6a). Finally, the time derivative of the Lyapunov functional is

EQ (t)"F (t)S (t), (7)

where S(t)": l
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If we choose the control law as

F(t)"!P(t)sgn(S), (8)

where P(t) is an arbitrary positive function of time, the control law (8) results in the
negativeness of EQ (t) in equation (7).
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We de"ne the state space H of the system as follows:
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We set g"[vR wR v
xx

w
xx

]T as the generalized co-ordinate vector. It is known that
the zero co-ordinate vector g"0 corresponds to the equilibrium state of the
system. From equations (4) and (5), as g"0, we have the transverse displacements,
v(x, t)"w (x, t)"0 and v
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To prove the stability of the equilibrium state g"0, we extend the proof process
of Habib and Radchi!e [12], in which the beam does not spin. The auxiliary
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It follows that
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Thus, p
1
(g, 0) is a measure of distance between the equilibrium state, g"0, and

the deformed state, gO0. Therefore, the metric p
1
(f, m) is positive de"nite and

symmetric.
Comparing equations (5) and (13) yields E(t)*p2

1
(g, 0) for gO0; therefore E(t) is

positive de"nite. To prove that E(t) admits an in"nitely small upper bound in the
neighborhood of g"0, it is required that E (t))jp2
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The control force (8) ensures that the spinning simple-#exure beam is asymp-
totically stable. However, the problem of mathematical description of the sliding
mode does not arise until now. The original point v(x, t)"w(x, t)"0 of the sliding
mode is the control goal.

4. CONTROL DESIGN BY REACHING CONDITION

The condition under which the state will move towards and reach a sliding
surface is called the reaching condition. The system trajectory under the reaching
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condition is called the reaching mode or reaching phase. It is noticed that the
control law (8) does not satisfy the reaching condition. In order to own the property
of the reaching condition, the su$cient condition SQ (t) ) S(t)(0 must be satis"ed
[13, 14]. Taking the time derivative of switching function S(t), using equations (1)
and (2) and integrating by parts, we have
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In order to satisfy the su$cient condition SQ (t) ) S(t)(0, the control law can be
expressed as
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which is the same as equation (8) if we take
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From equations (8), (16) and (17), some observations can be obtained as follows.

(i) Lyapunov's direct method in the above section is employed to "nd the
switching function S(t) only. This process is di!erent from that of Orlov [11]
by setting a switching function in the Lyapunov functional candidate.

(ii) In equation (16), we must notice the situation when denominator
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bounded. In order to avoid the unboundness, the control law can be
modi"ed as
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where e and k are small positive constants. The main purpose of adding an
e in the denominator of the control law is to bound the control force. The
switching function sgn(S) in equation (16) replaced by S/( DS D#k) is to
smooth the discontinuous function and erase the chattering motions.

(iii) Another approximation, called the saturation controller, to obviate the
unbounded control input is proposed as follows:
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where FM is an upper bounded control force. Due to the limitation of FM , the
unbounded problem will not occur. However, the chattering phenomenon
will not be improved.

(iv) When using the two controllers (18a) and (18b) are used, the parametric
control system described by equations (1) and (2) becomes non-linear.

5. EXISTENCE OF SLIDING MODE
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Integrating by parts for the last term in equation (19), applying the boundary
conditions (3) and (4) using v
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Substituting equation (20) into equation (19), we have
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Integrating by parts with respect to equation (21a), we have
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6. NUMERICAL RESULTS AND DISCUSSION

The numerical results are provided to verify the availability of the proposed
PVSC algorithms. The system parameters are oA"0)7 kg/m, >I"38 Nm2 and
l"1 m. By use of the "nite di!erence method, the numerical solutions of these
control systems are obtained directly. An explicit central "nite di!erence scheme
with a mesh of 10 elements along the beam length is chosen to approximate
the transverse vibrations and the convergence criterion is chosen as Dx/Dt2
(0)5 [15].

6.1. STATIONARY MODEL

Figures 2(a}e) show the control results of the simple-#exure beam in stationary
situation X"0. The initial conditions of the transverse displacements are speci"ed
by v (x, 0)"0)03 sin(xn/l) and w(x, 0)"0. The initial velocities are zero. The
Figure 2. The transient responses of parametric variable structure control in stationary situation.
(a) The transverse amplitudes v(l/2, t), (b) the velocity v

t
(l/2, t), (c) the control input F(t), (d) the time

histories of switching function S (t), (e) the total energy E(t) (*: e"0)05, k"0)01 in equation (18a),
} } }: saturation controller (18b); 2: uncontrol).



Figure 3. The transient responses of parametric variable structure control in spinning situation.
(a) The transverse amplitudes v(l/2, t), (b) the transverse amplitudes w (l/2, t), (c) the control F(t) of
(18a), (d) the control F (t) of (18b), (e) the time histories of switching function S(t), (f ) the total energy
E(t) (*: e"0)05, k"0)01 in equation (18a); } } }: saturation controller (18b); 2: uncontrol).
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control gains r
1
"300 and r

2
"0)8 are used in equation (16). The solid lines are

used for the bounded and smoothed control (18a) with e"0)05 and k"0)01 while
the dash lines are used for the saturation controller (18b). In Figures 2(a, b),
the transverse amplitudes v(l/2, t) and velocity v

l
(l/2, t) are illustrated respectively.

The amplitudes are obviously suppressed via the PVSC laws in comparison
with the uncontrol system (dotted lines). The time histories of the control inputs
F(t) are shown in Figure 2(c). It is observed that the controller (18a) is bounded
and smoothed. As the value of denominator : l

0
v2
xx

dx becomes smaller, the
control force is determined by the small positive constant e. For the saturation
controller (18b), the value of F (t) is limited to the e!ective range DF(t) D)
FM "120 N, which avoids the extremely large control input. The switching function
S(t)": l

0
v
t
v
xx

dx and total mechanical energy via the PVSC laws are shown in
Figures 2(d, e) respectively. It is seen that the system trajectories reach the switching
hypersurface S(t)"0 in Figure 2(d), and the total energies E(t) approach zero in
Figure 2(e).
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6.2. SPINNING MODEL

Figures 3(a}f) show the control results of the spinning simple-#exure beam with
X"30 rpm. The initial conditions are the same as those in the stationary model.
The control gains r

1
"40 and r

2
"0)8 are used. The transverse amplitudes v(l/2, t)

and w(l/2, t) are illustrated in Figures 3(a, b) respectively. The coupling e!ect
between the rigid-body motion and #exible vibrations can be seen clearly in the
uncontrol system (dotted lines). The amplitudes of the control system decrease and
reach the stable condition as the time increases. Figures 3(c, d) show the time
histories of the control forces. The upper bound FM "200 N is chosen (dash line) for
the saturation control (18b), and the constants e"0)05 and k"0)01 are speci"ed
in the controller (18a) (solid line). It is noticed that the control forces in Figure 3(c)
are bounded and smoothed, while the controller in Figure 3(d) is bounded but has
a chattering phenomenon. The switching functions S(t)": l

0
[(v

t
!Xw)v

xx
#

(w
t
#Xv)w

xx
] dx and total mechanical energy E(t) in equation (5) via the PVSC

laws are shown in Figures 3(e, f ) respectively. However, E(t) has the impulse
phenomenon for the saturation controller (18b).

It is well known that the higher values of the control gains r
1

and r
2

have the
quicker convergence and more rapid decay. By decreasing the constants e and k in
equation (18a) and increasing the upper bound FM in equation (18b), the control
inputs (18a) and (18b) will truly approximate to the controller (16), and the system
will get a better performance.

7. CONCLUSIONS

In conclusion, the PVSC laws designed by Lyapunov's direct method are
successfully applied in stationary and spinning #exible beams. The proposed
control laws ensure that the system is asymptotically stable and satis"es the
reaching condition simultaneously. Two approximate controllers are proposed to
avoid the unbounded and unsmoothed control inputs. In simulations, a convenient
explicit central "nite di!erence scheme is used to solve the numerical solutions.

From the theoretical analysis and numerical results, we draw the conclusions as
follows:

1. For a stationary model, the PVSC causes the total mechanical energy and
the transient amplitudes to decay to zero, and the system is asymptotically
stable.

2. For a spinning model, the PVSC causes the total mechanical energy and the
transient amplitudes to decay to the stable state, but not to reach zero,
because the coupling e!ect between the rigid-body motion and #exible vibra-
tion exists in the coupled governing equations.

ACKNOWLEDGMENT

The authors are greatly indebted to the National Science Council of the R.O.C.
for supporting the research through contract No. NSC-87-2212-E-033-016.



554 R.-F. FUNG AND J.-P. LEE
REFERENCES

1. J. W. LUND, and Z. WANG 1986 Journal of <ibration, Acoustics, Stress, and Reliability in
Design 108, 177}181. Application of the Riccati method to rotor dynamic analysis of
long shafts on a #exible foundation.

2. D. FRANKE 1980 ¹opics in Identi,cation and Distributed Parameter System. Wiesbaden,
Germany: Vieweg Publishing. Control of bilinear distributed parameter systems.

3. D. FRANKE 1982 Distributed Parameter Control Systems, (S. G. Tzafestas, editor).
Oxford: Pergamon Press. Adaptive and robustness properties of certain bilinear
distributed parameter control systems.

4. C. D. RAHN and C. D. MOTE JR. 1994 American of Society of Mechanical Engineers
Journal of <ibration and Acoustics 116, 379}385. Parametric control of #exible systems.

5. S. V. EMELYANOV 1967 <ariable Structure Control Systems. Moscow: Nauka.
6. V. I. UTKIN 1974 Sliding Modes and their Applications in <ariable Structure Systems.

Moscow: Nauka.
7. U. ITKIS 1976 Control Systems of <ariable Structures. New York: Wiley.
8. R. F. FUNG and C. C. LIAO 1995 International Journal of Mechanic Science, 37, 985}993.

Application of variable structure control in the nonlinear string system.
9. J. P. LEE 1998 Master ¹hesis, Chung >uan Christian ;niversity, Chung-¸i, ¹aiwan.

Active boundary and parametric controls of a spinning beam system.
10. H. F. BAUER 1980 Journal of Sound and <ibration 72, 177}189. Vibration of a rotating

uniform beam, Part I: orientation in the axis of rotation.
11. Y. U. ORLOV 1983 Automatica Remote Control 44, 426}430. Application of Lyapunov

method in distributed system.
12. M. S. HABIB and C. J. RADCLIFFE 1991 American Society of Mechanical Engineers Journal

of Dynamic System, Measurement, and Control 46, 295}299. Active parametric damping
of distributed parameter beam transverse vibration.

13. V. I. UTKIN 1977 IEEE ¹ransactions on Automatic Control AC-22, 212}222. Variable
structure systems with sliding modes.

14. J. Y. HUNG and W. GAO 1993 IEEE ¹ransactions on Industrial Electronics, 40, 2}22.
Variable structure control: a survey.

15. N. S. ABHYANKAR, E. K. HALL and S. V. HAANAGUD 1993 American of Society of
Mechanical Engineers Journal of Applied Mechanics 60, 167}174. Chaotic vibrations of
beams: numerical solution of partial di!erential equations.


	1. INTRODUCTION
	Figure 1

	2. EQUATIONS OF MOTION
	3. CONTROL DESIGN BY LYAPUNOV'S METHOD
	4. CONTROL DESIGN BY REACHING CONDITION
	5. EXISTENCE OF SLIDING
	6. NUMERICAL RESULTS AND DISCUSSION
	Figure 2
	Figure 3

	7. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

